Python数据分析第2版
编辑推荐
Python拥有许多强大的程序库,已经成为进行各种数据分析和预测建模任务的流行平台。Python的应用范围很广,拓展性很大。本书介绍了众多的Python模块,例如Matplotlib、statsmodels、scikit-learn和NLTK。同时,本书还介绍了Python如何与外部环境(例如R、Fortran、C/C++和Boost库)进行交互。
通过阅读本书,你将学会如何使用Python处理和操作数据,并完成复杂的分析和建模。我们将借助NumPy和Pandas来学习数据的各种操作。本书将介绍如何从各种数据源(例如SQL、NoSQL、CSV文件和HDF5)中存储和检索数据。此外,我们还将学习如何通过可视化库实现数据的可视化,以及信号处理、时间序列、文本数据分析、机器学习和社交媒体分析等主题。
内容简介
Python作为一种程序设计语言,凭借其简洁、易读及可扩展性日渐成为程序设计领域备受推崇的语言。同时,Python语言的数据分析功能也逐渐为大众所认可。
本书就是一本介绍如何用Python进行数据分析的学习指南。全书共12章,从Python程序库入门、NumPy数组和Pandas入门开始,陆续介绍了数据的检索、数据加工与存储、数据可视化等内容。同时,本书还介绍了信号处理与时间序列、应用数据库、分析文本数据与社交媒体、预测性分析与机器学习、Python生态系统的外部环境和云计算、性能优化及分析、并发性等内容。在本书的最后,还采用3个附录的形式为读者补充了一些重要概念、常用函数以及在线资源等重要内容。
本书延续了上一版示例丰富、简单易懂的优点,非常适合对Python语言感兴趣或者想要使用Python语言进行数据分析的读者参考阅读。
作者简介
Armando Fandango是Epic工程咨询集团知名数据科学家,负责与国防和政府机构有关的保密项目。Armando是一位技术精湛的技术人员,拥有全球创业公司和大型公司的工作经历和管理经验。他的工作涉及金融科技、证券交易所、银行、生物信息学、基因组学、广告技术、基础设施、交通运输、能源、人力资源和娱乐等多个领域。
Armando在预测分析、数据科学、机器学习、大数据、产品工程、高性能计算和云基础设施等项目中工作了十多年。他的研究兴趣横跨机器学习、深度学习和科学计算等领域。