GPU与MATLAB混合编程
编辑推荐
适读人群 :工程技术人员、高等院校学生
除了仿真和算法开发,当前越来越多的研发人员使用MATLAB进行复杂计算领域的产品部署。用户可以借助图像处理器分布式并行处理,提升MATLAB代码的性能。由于提供了很多高层函数,MATLAB成功成为用于快速原型设计的出色仿真工具。但面对纷繁复杂的GPU细节和背景知识,MATLAB用户在面对GPU强大计算能力时,总是犹豫不决。本书为用户提供了入门读物,架起了MATLAB和GPU之间的桥梁。本书从零基础开始,深入浅出,如介绍MATLAB使用CUDA所需的设置(支持Windows、Linux和Mac OX等多种操作系统),引导用户通过一个个的专题(如CDUA库),逐步掌握GPU编程。作者还与读者分享了在大数据计算领域的MATLAB、C++和GPU的编程经验,展示了如何修改MATLAB代码以更好地利用GPU的计算能力,以及如何将代码整合到商用软件产品中。全书提供了大量的代码示例,能够作为用户C-MEX和CUDA代码的模板。
内容简介
本书介绍CPU和MATLAB的联合编程方法,包括首先介绍了不使用GPU实现MATLAB加速的方法;然后介绍了MATLAB和计算统一设备架(CUDA)配置通过分析进行zuiyou规划,以及利用c-mex进行CUDA编程;接着介绍了MATLAB与并行计算工具箱和运用CUDA加速函数库;zui后给出计算机图形实例和CUDA转换实例。本书还通过大量的实例、图示和代码,深入浅出地引导读者进入GPU的殿堂,易于读者理解和掌握。通过阅读本书,读者无需付出很多的精力和时间,就可以学习使用GPU进行并行处理,实现MATLAB代码的加速,提高工作效率,从而将更多的时间和精力用于创造性工作和其他事情。
本书可作为相关专业高年级本科生和研究生的教材,也可作为工程技术人员的参考书。
作者简介
Jung W. Suh,美国KLA-Tencor(科天)公司的高级算法工程师和研究科学家。2007年因其在3D医学图像处理领域的工作,从弗吉尼亚理工大学获得博士学位。他参与了三星电子在MPEG-4和数字移动广播(DMB)系统的研发工作。在任职KLA-Tencor公司前,他还担任HeartFlow公司高级科学家。研究领域包括生物图像处理、模式识别、机器学习和图像/视频压缩。发表30余篇期刊和会议论文,并拥有6项专利。
Youngmin Kim,美国Life Technologies(生命科技)公司的高级软件工程师,从事实时图像获取和高吞吐量图像分析程序开发工作。他之前的工作还包括设计和开发自动显微镜和用于实时分析的集成成像算法软件。先后从伊利诺伊大学(厄巴纳-香槟校区)电子工程专业获得学士和硕士学位。在加入Life Technologies公司前,他还在三星公司开发了3D图像软件,并在一家创业公司领导软件团队。