数据科学入门
编辑推荐
介绍数据科学基本知识的重量级读本,Google数据科学家作品。
数据科学是一个蓬勃发展、前途无限的行业,有人将数据科学家称为“21世纪头号性感职业”。本书从零开始讲解数据科学工作,教授数据科学工作所必需的黑客技能,并带领读者熟悉数据科学的核心知识——数学和统计学。
作者选择了功能强大、简单易学的Python语言环境,亲手搭建工具和实现算法,并精心挑选了注释良好、简洁易读的实现范例。书中涵盖的所有代码和数据都可以在GitHub上下载。
通过阅读本书,你可以:
学到一堂Python速成课;
学习线性代数、统计和概率论的基本方法,了解它们是怎样应用在数据科学中的;
掌握如何收集、探索、清理、转换和操作数据;
深入理解机器学习的基础;
运用k-近邻、朴素贝叶斯、线性回归和逻辑回归、决策树、神经网络和聚类等各种数据模型;
探索推荐系统、自然语言处理、网络分析、MapReduce和数据库。
内容简介
本书基于易于理解且具有数据科学相关的丰富的库的Python语言环境,从零开始讲解数据科学工作。具体内容包括:Python速成,可视化数据,线性代数,统计,概率,假设与推断,梯度下降法,如何获取数据,k近邻法,朴素贝叶斯算法,等等。作者借助大量具体例子以及数据挖掘、统计学、机器学习等领域的重要概念,详细展示了什么是数据科学。
作者简介
Joel Grus是Google的一位软件工程师,曾于数家创业公司担任数据科学家。目前住在西雅图,专注于数据科学工作并乐此不疲。