Python深度学习实战:75个有关神经网络建模、强化学习与迁移学习的解决方案[PythonDeepLearningCookbook]
编辑推荐
适读人群 :从事机器学习、深度学习、人工智能等领域的工程技术人员以及高等院校相关专业本科生、研究生和教师 本书针对所提出的问题提供技术解决方案,并提供对这些解决方案的详细解释。此外,还讨论了使用TensorFlow、PyTorch、Keras和CNTK等流行开源框架针对实际问题解决方案相应的优缺点。本书也介绍了人工神经网络基本概念及其相关技术,包括经典的网络拓扑等。本书主要目的是为Python程序员提供较为详细的实战方案,以便将深度学习应用于常见和不常见实际问题场景。 本书包括14章: (1)编程环境、GPU 计算、云解决方案和深度学习框架; (2)前馈神经网络; (3)卷积神经网络; (4)递归神经网络; (5)强化学习; (6)生成对抗网络; (7)计算机视觉; (8)自然语言处理; (9)语音识别和视频分析; (10)时间序列和结构化数据; (11)游戏智能体和机器人; (12)超参数选择、调优和神经网络学习; (13)网络内部构造; (14)预训练模型。 本书的主要特点: 1)提供训练不同神经网络模型并调整模型以期获得佳性能的实战方案; 2)使用诸如TensorFlow、Caffe、Keras、Theano的Python框架进行自然语言处理、计算机视觉识别等; 3)Python深度学习中的常见以及不常见问题的解决指南。 通过本书将会学到: 1)在Python中实现不同的人工神经网络模型; 2)选择诸如PyTorch、TensorFlow、MXNet和Keras等优的Python开源框架来进行深度学习; 3)应用神经网络内部细节相关的提示和技巧,以提高学习成效; 4)巩固机器学习原理并将其应用于深度学习领域; 5)重用Python代码段并将其应用于解决日常问题; 6)评估每个解决方案的成本/收益和性能影响。
内容简介
《Python深度学习实战:75个有关神经网络建模、强化学习与迁移学习的解决方案》以自上而下和自下而上的方法来展示针对不同领域实际问题的深度学习解决方案,包括图像识别、自然语言处理、时间序列预测和机器人操纵等。还讨论了采用诸如TensorFlow、PyTorch、Keras和CNTK等流行的深度学习开源框架用于实际问题的解决方案及其优缺点。《Python深度学习实战:75个有关神经网络建模、强化学习与迁移学习的解决方案》内容包括:用于深度学习的编程环境、GPU计算和云端解决方案;前馈神经网络与卷积神经网络;循环与递归神经网络;强化学习与生成对抗网络;深度学习用于计算机视觉、自然语言处理、语音识别、视频分析、时间序列预测、结构化数据分析以及游戏智能体(Agents)和机器人操控等。后讨论了深度学习的超参数选择和神经网络的内在结构以及预训练模型的使用技巧等。
作者简介
Indra den Bakker是一位经验丰富的深度学习工程师和培训师。他是23insights平台的创始人,这是NVIDIA所属孵化项目计划的一部分,这是一个机器学习构建解决方案的初创型计划,可以改变世界上重要的行业。在开放课程平台Udacity,他指导了在深度学习和相关领域攻读微学位(Nanodegree)的学生,他还负责审查学生的实习项目。Indra拥有计算智能背景,并在创建23insights平台之前作为IPG Mediabrands的品牌代理以及Screen6的数据科学家若干年。 程国建,博士,教授,西安培华学院智能科学与信息工程学院(中兴电信学院)院长。1990年12月获中国石油大学(华东)计算机应用专业工学学士学位;1994年6月获西安电子科技大学计算机与人工智能专业工学硕士学位;1997年9月至2001年12月留学德国图宾根大学,获理学博士学位(Dr.rer.nat.)。2002年3月至2003年8月在戴姆勒集团(Daimler AG,奔驰汽车公司)从事汽车嵌入式软件产品线构造、车载多媒体互连架构(Telematics)等方面的研究工作。2004年9月回国任教,2008年底破格晋升教授职称,2009年7月荣获“陕西省优秀留学回国人员”荣誉称号,2010年12月赴美国西弗吉尼亚大学石油工程系进行访学活动。近几年主持并完成十余项科研项目,包括国家自然科学基金项目2项,指导研究生50余名,在相关学术研究领域及国际会议发表文章150余篇,其中核心期刊70余篇,三大检索(SCI/ISTP/EI)论文50余篇,出版专(译)著十余部。主要科研领域及研究方向包括:计算智能、机器学习、模式识别、图像处理、智能数字油田、商业智能、大数据与智慧城市等。