SparkMLlib机器学习:算法、源码及实战详解
编辑推荐
本书系统、全面、深入地解析了SparkMLlib机器学习的相关知识,着力于探索分布式机器学习的底层实现。
以源码为基础,兼顾算法、理论与实战,帮助读者在实际工作中进行MLlib的应用开发和定制开发。 适合大数据、Spark、数据挖掘领域的从业人员阅读。
内容简介
《Spark MLlib机器学习:算法、源码及实战详解》以Spark 1.4.1版本源码为切入点,全面并且深入地解析Spark MLlib模块,着力于探索分布式机器学习的底层实现。
《Spark MLlib机器学习:算法、源码及实战详解》中本着循序渐进的原则,首先解析MLlib的底层实现基础:数据操作及矩阵向量计算操作,该部分是MLlib实现的基础;接着对各个机器学习算法的理论知识进行讲解,并且解析机器学习算法如何在MLlib中实现分布式计算;然后对MLlib源码进行详细的讲解;最后进行MLlib实例的讲解。相信通过《Spark MLlib机器学习:算法、源码及实战详解》的学习,读者可全面掌握Spark MLlib机器学习,能够进行MLlib实战、MLlib定制开发等。 《Spark MLlib机器学习:算法、源码及实战详解》适合大数据、Spark、数据挖掘领域的从业人员阅读,同时也为Spark开发者和大数据爱好者展现了分布式机器学习的原理和实现细节。
作者简介
黄美灵,久邦数码高级数据挖掘工程师,Spark爱好者,致力于分布式机器学习的研究与应用,现从事移动互联网的计算广告和数据变现工作,专注Spark机器学习在计算广告中的研究和实践。