深度实践Spark机器学习
编辑推荐
适读人群 :本书适合于初中级大数据、机器学习的技术人员。 (1)作者是有20余年工作经验的大数据专家和人工智能专家,就职于国家外汇交易中心。 (2)本书系统讲解了Spark机器学习的技术、原理、组件、算法,以及构建Spark机器学习系统的方法、流程、标准和规范。 (3)肖京等国家千人计划学者高度评价并推荐。
内容简介
本书系统讲解了Spark机器学习的技术、原理、组件、算法,以及构建Spark机器学习系统的方法、流程、标准和规范。此外,还介绍了Spark的深度学习框架TensorFlowOnSpark,以及如何借助它实现卷积神经网络和循环神经网络。 全书共14章,分为四个部分: 第一部分(1~7章) 主要讲解了Spark机器学习的技术、原理和核心组件,包括Spark ML、Spark ML Pipeline、Spark MLlib,以及如何构建一个Spark机器学习系统。 第二部分(8~12章) 主要以实例为主,讲解了Spark ML的各种机器学习算法,包括推荐模型、分类模型、聚类模型、回归模型,以及PySpark决策树模型和Spark R朴素贝叶斯模型。 第三部(第13章) 与之前的批量处理不同,本章以在线数据或流式数据为主,讲解了Spark的流式计算框架Spark Streaming。 第四部分(第14章) 介绍了Spark深度学习,主要包括TensorFlow的基础知识及它与Spark的整合框架TensorFlowOnSpark。
作者简介
吴茂贵 资深BI和大数据专家,就职于中国外汇交易中心,在BI、数据挖掘与分析、数据仓库、机器学习等领域有超过20年的工作经验,在Spark机器学习、TensorFlow深度学习领域大量的实践经验。 郁明敏 对大数据、机器学习有一定的研究,擅长Python、Hadoop、Spark等技术,曾获得“江苏省TI杯大学生电子竞技大赛”二等奖和全国大学生数学建模大赛二等奖。 朱凤元 毕业于香港浸会大学,获运筹学与商业统计硕士学位,毕业后在飞牛网、永安保险、麦芽金服等公司从事数据挖掘建模工作。 张粤磊 资深DBA和大数据架构师,10余年一线数据数据挖掘与分析实战经验。先后在咨询、金融、互联网行业担任数据平台技术负责人或架构师。 杨本法 高级算法工程师,在机器学习、文本挖掘、可视化等领域有多年实践经验。熟悉Hadoop生态圈的相关技术,在R、Spark方面有丰富的实战经验。