深入浅出深度学习:原理剖析与Python实践
编辑推荐
本书的特色在于取舍明确,一切无助于迅速理解深度学习精髓的内容全被摒弃了,并着重阐述了技术上的重点和难点;表达上深入浅出:即便是从未接触过AI知识的人,也能从作者简明清晰的表述中,一窥深度学习。
对任何一位想成为AI/深度学习领域工程师的读者来说,《深入浅出深度学习:原理剖析与Python实践》能帮你迅速打开AI的大门,并成长为一名合格的AI工程师。
内容简介
《深入浅出深度学习:原理剖析与Python实践》介绍了深度学习相关的原理与应用,全书共分为三大部分,第一部分主要回顾了深度学习的发展历史,以及Theano的使用;第二部分详细讲解了与深度学习相关的基础知识,包括线性代数、概率论、概率图模型、机器学习和至优化算法;在第三部分中,针对若干核心的深度学习模型,如自编码器、受限玻尔兹曼机、递归神经网络和卷积神经网络等进行详细的原理分析与讲解,并针对不同的模型给出相应的具体应用。
《深入浅出深度学习:原理剖析与Python实践》适合有一定高等数学、机器学习和Python编程基础的在校学生、高校研究者或在企业中从事深度学习的工程师使用,书中对模型的原理与难点进行了深入分析,在每一章的后面都提供了详细的参考文献,读者可以对相关的细节进行更深入的研究。理论与实践相结合,《深入浅出深度学习:原理剖析与Python实践》针对常用的模型分别给出了相应的应用,读者也可以在Github中下载和查看《深入浅出深度学习:原理剖析与Python实践》的代码(https://github.com/innovation-cat/DeepLearningBook)。
作者简介
黄安埠,2012年毕业于清华大学,获硕士学位,在校期间活跃于TopCoder等编程竞赛社区。现为腾讯基础研究高级工程师,研究领域包括个性化推荐、自然语言处理和大规模的相似度优化计算,特别是对于深度学习在推荐系统的应用有深入的研究,并申请了国内十余项相关专利。