NLTK基础教程用NLTK和Python库构建机器学习应用
编辑推荐
自然语言处理(NLP)属于人工智能与计算机语言学的交叉领域,处理的是计算机与人类语言之间的交互问题。随着人机交互需求的日益增长,计算机具备处理当前主要自然语言的能力已经成为了一个必然趋势。NLTK正是这一领域中一个强大而稳健的工具包。
在这本书中,我们首先会介绍一些与NLP相关的知识。然后,我们会探讨一些与数据科学相关的任务,通过这些任务来学习如何从零开始构建自定义的标识器和解析器。在此过程中,我们将会深度探索NLP领域的基本概念,为这一领域各种开源的Python工具和库提供具有实践意义的见解。接下来,我们将会介绍如何分析社交媒体网站,发现热门话题,进行舆情分析。zui后,我们还会介绍一些用于处理大规模文本的工具。
在阅读完本书之后,您将会对NLP与数据科学领域中的概念有一个充分的了解,并能将这些知识应用到日常工作中。
如果您是NLP或机器学习相关领域的爱好者,并有一些文本处理的经验,那么本书就是为你量身定做的。此外,这本书也是专业Python程序员快速学习NLTK库的理想选择。
通过本书,你将学会:
■ 了解自然语言的复杂性以及机器对它们的处理方式。
■ 如何利用标识化处理手段清理文本歧义,并利用分块操作更好地处理数据。
■ 探索不同标签类型的作用,并学习如何将句子标签化。
■ 如何根据自己的需要来创建自定义的解析器和标识器。
■ 如何构建出具有拼写检查、搜索、机器翻译以及问答系统等功能的实用程序。
■ 如何通过信息爬取与捕获的手段对相关数据内容进行检索。
■ 如何通过特性的提取与选取,构建出针对不同文本的分类系统。
■ 如何使用各种第三方Python库,如pandas、scikit-learn、matplotlib、gensim。
■ 如何对社交媒体网站进行分析,包括发掘热门话题、舆情分析等。
内容简介
NLTK 库是当前自然语言处理(NLP)领域zui为流行、使用zui为广泛的库之一, 同时Python语言经过一段时间的发展也已逐渐成为主流的编程语言之一。
本书主要介绍如何通过NLTK库与一些Python库的结合从而实现复杂的NLP任务和机器学习应用。全书共分为10章。第1章对NLP进行了简单介绍。第2章、第3章和第4章主要介绍一些通用的预处理技术、专属于NLP领域的预处理技术以及命名实体识别技术等。第5章之后的内容侧重于介绍如何构建一些NLP应用,涉及文本分类、数据科学和数据处理、社交媒体挖掘和大规模文本挖掘等方面。
本书适合 NLP 和机器学习领域的爱好者、对文本处理感兴趣的读者、想要快速学习NLTK的zishenPython程序员以及机器学习领域的研究人员阅读。
作者简介
Nitin Hardeniya 数据科学家,拥有4年以上从业经验,期间分别任职于Fidelity、Groupon和[24]7等公司,其业务横跨各个不同的领域。此外,他还拥有IIIT-H的计算语言学硕士学位,并且是5项客户体验专利的作者。