Python数据科学入门
编辑推荐
Python是适用于数据科学的编程语言。即使你初次接触Python语言,本书也能教会你通过Python编程来获取、组织、处理和分析大量的信息并识别出趋势和模式。从安装Python开始,一直到执行交叉验证,快用本书开始学习之旅吧!
看看Python为什么适用于数据科学——浏览数据科学管道并学习Python的基本功能。
安装设置——安装Python、下载数据集和样例代码并用数字和逻辑来工作,创建函数,存储和索引数据。
可视化——探索MatPlotLib,创建图表,包括饼图、条形图、直方图和散点图。
深入探索——学习类和多进程,为数值型的数据定义描述性的统计量并应用于可视化。
数据处理——研究降维解决方案,执行层次聚类并学习检测数据中的异常点。
让数据告诉你一些信息——使用线性模型并执行交叉验证、选取和优化。
本书包含以下精彩内容:
· Python数据分析编程基础
· 有关Python开发环境的一切
· 如何使用随机分布和回归模型
· 对从Web上获取数据的建议
· 使用NumPy、pandas和SciPy来做什么
· 用HTML页面来工作的提示建议
· 如何来创建交互型的图表表达
· 十个必不可少的数据资源
内容简介
本书的目标是介绍如何使用Python 语言及其工具,解决和数据科学所关联的复杂任务。
全书共6 个部分,分22 章,涵盖了Python 数据科学基础知识,数据的采集、整理、整形、应用,数据的可视化,数据分析和处理,数据学习,以及和数据科学相关的10 个话题等。本书将重点放在使用正确的工具上,教读者如何使用Anaconda、atPlotLib、NumPy、pandas、Scikit-learn 等常用的工具来解决数据科学的相关问题。
本书适合对数据科学的知识和应用方法感兴趣的读者阅读,特别适合有志于学习Python 数据分析和处理的读者学习参考。
作者简介
约翰·保罗·穆勒(John Paul Mueller)是一名顾问、应用开发人员、作家和技术编辑,已经写了超过600篇的文章和97本书。卢卡·马萨罗(Luca Massaron)是一名数据科学家,专注于多变量统计分析、机器学习和客户洞察力等领域。他是意大利Web听众分析方面的先驱,是世界知名的数据科学家之一。