Java数据分析指南
编辑推荐
Java是一门经典的编程语言,在数据分析方面有着突出的表现。学习本书,读者可以掌握各种实用的数据分析技巧,学会如何处理关系型、非关系型数据、时间序列数据等,并能够实现重要的机器学习算法。
本书由专业经验丰富的高校老师翻译完成,对于读者提升自己对各种Java工具和库的使用能力会有非常好的锻炼和提升,这是一本非常不错的基于Java的数据分析学习指南。
内容简介
当今,数据科学已经成为一个热门的技术领域,例如数据处理、信息检索、机器学习、自然语言处理、数据可视化等都得到了广泛的应用和发展。而Java作为一门经典的编程语言,在数据科学领域也有着突出的表现。
本书旨在通过Java编程来引导读者更好地进行数据分析。本书包含11章内容,详细地介绍了数据科学导论、数据预处理、数据可视化、统计、关系数据库、回归分析、分类分析、聚类分析、推荐系统、NoSQL数据库以及Java大数据分析等重要主题。
本书适合想通过Java解决数据科学问题的读者,也适合数据科学领域的专业人士以及普通的Java开发者阅读。通过阅读本书,读者将能够对数据分析有更加深入的理解,并且掌握实用的数据分析技术。
作者简介
约翰·哈伯德(John R. Hubbard)任教于宾夕法尼亚州和弗吉尼亚州的高校,从事计算机数据分析工作长达40余年。他拥有宾州州立大学的计算机科学硕士学位和密歇根大学的数学博士学位。目前,他在里士满大学担任数学和计算机科学的名誉教授,他在该校讲授数据结构、数据库系统、数值分析和大数据。
哈伯德博士出版了许多著作并发表过多篇论文,除了本书,他还出版过6本计算领域的著作。其中某些著作已经翻译为德文、法文、中文和其他5种语言。此外,他还是一位业余音乐家。