深度学习:基于Matlab的设计实例
内容简介
深度学习:基于Matlab的设计实例 本书共包含6章内容,可以分为3个主题。书中例子均用MATLAB编写而成。 第1个主题是机器学习。深度学习起源于机器学习,这意味着如果想要理解深度学习的本质,就必须在某种程度上知道机器学习背后的理念。第1章从机器学习与深度学习的关系开始讲起,随后是解决问题的策略和机器学习的基本局限性。 第2个主题是人工神经网络这是第2~4章的重点内容。由于深度学习就是采用一种神经网络的机器学习,所以不能将神经网络与深度学习分开。第2章从神经网络的基本概念讲起:它的工作原理、体系结构和学习规则,也讲到了神经网络由简单的单层结构演化为复杂的多层结构的原因。第3章介绍了反向传播算法,它是神经网络中一种重要和典型的学习规则,深度学习也使用这种算法。本章解释了代价函数和学习规则是如何联系起来的,哪一种代价函数在深度学习中被广泛使用。第4章介绍了将神经网络应用到分类问题中的方法。其中单列一节专门讲分类,因为它是目前流行的一种深度学习应用。例如图像识别是一个分类问题,也是深度学习的一种主要应用。 第3个主题是深度学习,也是本书的重点,将在第5章和第6章中讲解。第5章介绍了使深度学习能够产生卓越性能的驱动因素。第6章讲解了卷积神经网络,本章首先介绍了卷积神经网络的基本概念和结构,并与前面的图像识别算法进行了比较;随后解释了卷积层和池化层的作用和运算方法,它们是卷积神经网络的重要组成部分。第6章也包含了一个用卷积神经网络进行数字图像识别的例子,并研究了图像通过各层的演化过程。
作者简介
Phil Kim,博士,从事无人驾驶飞机自主飞行算法和机载软件的开发和研制工作。同时,他作为一名经验丰富的MATLAB程序员,一直致力于使用MATLAB进行人工智能、深度学习的大数据集绘制和分析算法的研究,先后在美国出版了MATLAB Deep Learning: with Machine Learning, Neural Networks and Artificial Intelligence和Deep Learning for Beginners: with MATLAB Examples 等书籍,在人工智能和MATLAB领域享有较高声誉。 译者简介 邹伟,副研究员,北京睿客邦科技有限公司CEO,并成立了中科院邹博人工智能研究中心(杭州站)等产研机构;研究方向为机器学习、数据挖掘、计算几何等领域,研究成果已成功应用于大型气象设备的图像与文本挖掘、金融产品AI化、股票交易与预测、高速公路流量预测和分析、传统农资产品价格预测和决策等领域;获得发明专利4项,著作权3个。