机器学习入门之道
编辑推荐
写给IT工程师看的机器学习入门书
紧紧围绕“机器学习的商业应用”这个主题,从数学原理上解释机器学习的一些基础算法,如*小二乘法、*优推断法、感知器、Logistic回归、K均值算法、EM算法、贝叶斯推断等。
帮助读者理解机器学习的本质,着眼于教会读者使用什么样的思维方式,以及如何进行计算,为读者探索更加复杂的深度学习领域或神经网络算法打下坚实的基础。
第 1章 数据科学和机器学习
第 2章 *小二乘法:机器学习理论第一步
第3章 *优推断法:使用概率的推断理论
第4章 感知器:分类算法的基础
第5章 Logistic回归和ROC曲线:学习模型的评价方法
第6章 K均值算法:无监督学习模型的基础
第7章 EM算法:基于*优推断法的监督学习
第8章 贝叶斯推断:以数据为基础提高置信度的手法
内容简介
人工智能正在形成一股新的浪潮,它将从技术、经济、社会等各个层面改变我们的工作和生活方式。作为实现人工智能的重要技术,机器学习正在受到人工智能专家之外的更广泛人群的关注,想要了解机器学习相关知识和技术的人日益增多。
本书紧紧围绕“机器学习的商业应用”这个主题,从数学原理上解释了机器学习的一些基础算法,如*小二乘法、*优推断法、感知器、Logistic回归、K均值算法、EM算法、贝叶斯推断等。全书的主旨在于帮助读者理解机器学习的本质,因此作者介绍具体的例题时,基本的着眼点是教会读者使用什么样的思维方式,以及如何进行计算,为读者探索更加复杂的深度学习领域或神经网络算法打下坚实的基础。
作者简介
1971年4月生于日本大阪市。现为Linux工程师,任职于知名的Linux发行商Red Hat,主要致力于推动Linux/OSS在企业系统中的应用。从基于Linux/OSS的企业应用开发,到10000余台Linux服务器的运维,再到私有云的设计和构建,他通过各种各样的项目掌握了丰富的Linux编程经验,并积极地将自己的经验传授给年轻的程序员们。著作有《Linux系统网络管理技术》《Linux系统架构和应用技巧》等。