深度学习:一起玩转TensorLayer
编辑推荐
适读人群 :本书以通俗易懂的方式讲解深度学习技术,同时配有实现方法教学,面向深度学习初学者、进阶者,以及希望长期从事深度学习研究和产品开发的深度学习工程师和TensorFlow用户。 1.TensorLayer是一个基于TensorFlow的深度学习开发工具。其透明,灵活,高性能的特点,使得它得到了大量初学者乃至资深开发者的青睐。TensorLayer获得了ACM Multimedia颁发的2017年度开源软件奖。 2. 本书是在帝国理工学院计算机系终身教授郭毅可的领导下,本书由TensorLayer创始人领衔,TensorLayer主要开发团队倾力打造而成,作者全部来自一线人工智能研究员和工程师,为读者提供了一次非常美妙的AI之旅。
3. 本书案例是作者们经过精心挑选后写作的,其中不乏诸如,价值上亿美金的超高分辨率复原、已实际应用在医学上的图像语义分割等黄金案例,值得初学者和研究者们学习参考。
4. 本书作者额外提供了案例使用的模型,请到http://www.broadview.com.cn/book/5059下载使用。
内容简介
本书由TensorLayer创始人领衔,TensorLayer主要开发团队倾力打造而成。内容不仅覆盖了人工神经网络的基本知识,如多层感知器、卷积网络、递归网络及增强学习等,还着重讲解了深度学习的一些新的技术,如生成对抗网络、学习方法和实践经验,配有许多应用及产品的实例。读者可从零开始掌握深度学习技术,以及使用TensorLayer实现的各种应用。 本书以通俗易懂的方式讲解深度学习技术,同时配有实现方法教学,面向深度学习初学者、进阶者,以及希望长期从事深度学习研究和产品开发的深度学习的大学生和工程师。
作者简介
董豪:目前就读于帝国理工学院,从事计算机视觉、医疗数据分析和深度学习理论研究,在ICCV、TNSRE、TIFS、ACM MM等会议和期刊发表过论文,Neurocomputing、TIP等会议和期刊的审稿人。有创业经验,擅长把深度学习算法与实际问题结合,获得多项国家发明专利和实用新型专利,TensorLayer创始人。 郭毅可:英国帝国理工学院计算系终身教授, 帝国理工数据科学研究所(Data Science Institute)所长,上海大学计算机学院院长,中国计算机协会大数据专委会创始会员。郭教授主持多项中国、欧盟和英国大型数据科学项目,累计总金额达1000亿人民币。郭教授的研究重点为机器学习、云计算、大数据和生物信息学。也是大数据会议KDD2018 的主席. 他是上海,北京,江苏省政府特聘专家, 中国科学院网络信息中心、中国科学院深圳先进技术研究院客座研究员。郭教授从2015 年起,发起和领导了TensorLayer 项目作为帝国理工数据科学研究所的重要机器学习工具。 杨光:帝国理工医学院高级研究员,皇家布朗普顿医院医学图像分析师,伦敦大学圣乔治医学院荣誉讲师,伦敦大学学院(UCL)硕士、博士、IEEE会员、SPIE会员、ISMRM会员、BMVA会员,专注于医疗大数据以及医学图像的成像和分析,在各类期刊会议上发表论文近40篇,国际专利两项,Medical Physics杂志临时副主编,MIUA会议委员会委员,长期为专业杂志会议义务审稿50余篇。其研究方向获得英国EPSRC、CRUK、NIHR和British Heart Foundation (BHF)资助。近期致力于Medical AI方向的创新创业。 吴超:帝国理工数字科学研究所研究员,主要从事医疗和城市领域数据分析和建模的研究工作,研究工作获得EPSRC、Royal Society等多项研究基金资助。 王剑虹:帝国理工硕士及利物浦大学本科毕业,主要研究语音识别分类问题;目前在UCL攻读研究型硕士,主要研究增强学习在游戏中的运用。 幺忠玮:帝国理工硕士,本科毕业于北京邮电大学,主要研究方向为计算机视觉,对生成模型和目标识别领域感兴趣。目前致力于将目标检测算法植入嵌入式系统实现即时检测。 张敬卿:帝国理工博士在读,研究型硕士,主要研究兴趣包括深度学习、数据挖掘、时间序列与文本挖掘、多模态问题与生成模型。本科毕业于清华大学计算机科学与技术系,曾获得中国国家奖学金。 陈竑:北京大学光华管理学院在读,哈尔滨工业大学电子与信息工程学院毕业,深度学习爱好者。 林一鸣:帝国理工博士在读,主要研究深度学习在人脸分析方向的应用。 于思淼:帝国理工博士在读,浙江大学本科毕业,主要研究方向为深度学习、生成模型及其在计算机视觉方面的应用。 莫元汉:帝国理工博士在读,北京航空航天大学本科毕业,主要研究方向为深度学习、动力学及其在医疗图像分析方面的应用。 袁航:瑞士洛桑联邦理工(EPFL)硕士在读,本科就读于德国雅各布大学(Jacobs)计算机系,及在美国卡内基梅隆大学(CMU)计算机科学学院交换学习,主要从事计算神经科学与电脑人机接口研究。之前分别在帝国理工及马克斯普朗克智能系统研究院(Max Planck Institute for Intelligent Systems)进行研习,现在主要在EPFL G-lab研究脊髓修复对运动功能康复及血压控制等课题。