高效机器学习:理论、算法及实践
内容简介
本书共11章,将高效机器学习的理论、设计原则以及实际应用有机结合,深入探讨了机器学习的主要课题,包括知识发现、分类、遗传算法、神经网络、内核方法和生物启发技术等。读者可从中了解机器学习技术可以解决的相关问题和相应解决方案的实现,以及新系统的设计方法。本书讲解由浅入深,适合算法工程师、高校工科专业的学生、IT专业人员以及机器学习爱好者,为他们设计和创建全新有效的机器学习系统提供知识和实践指导。
作者简介
Rahul Khanna 英特尔公司专注于节能算法开发的平台架构师。在过去17年里,他从事服务器系统软件技术的研发工作,包括平台自动化、电力/热力优化技术、可靠性、优化和预测方法。他已经编写了与能量优化、平台无线互连、传感器网络、互连可靠性、预测建模、运动估计和安全的大量技术论文和图书。他拥有17项专利。他是英特尔高速互连内置自测试IBIST方法的联合发明人。他的研究兴趣包括基于机器学习的电力/热力优化算法,窄信道高速无线互连,稠密传感器网络中的信息检索。他是IEEE成员;并且由于其在平台技术改进领域的贡献,3次获得英特尔成就奖。
Mariette Awad 贝鲁特美国大学电子和计算机工程系助理教授。她从佛蒙特大学大学获得电子工程博士学位,曾是弗吉尼亚联邦大学、麻省理工学院客座教授。她还曾在IBM公司系统和技术团队担任无线产品工程师。她的研究兴趣包括机器学习、数据分析和能耗感知计算。