构建实时机器学习系统
编辑推荐
以全栈机器学习应用为目标
通过介绍Docker等部署工具,帮助读者加速掌握机器学习模型的产业化进程。不管你是就职于大公司,还是自己创业,希望本书的内容能够让你快速上线满意的机器学习系统,离梦想更近一点。
抓住机器学习主干,远离学院派
世界在变,机器学习也在不停地变。对于机器学习中的很多重要成员,如建模工具、分布式队列等,本书都会对其来龙去脉和发展趋势进行综述。希望通过这样的讨论,能够让读者对机器学习的发展趋势有自己的判断,在未来的成长中也能独占鳌头。
能读的代码,能跑的例子
本书力求避免代码的大段堆砌。所有案例代码都力求在 20 行以内,所有例子都通过多次可用性测试。同时我们也将源代码寄存在 Github 上面,随时进行更新排错。
实时股票交易实例数据
采用美股交易秒级数据作为案例数据,搭建实时机器学习平台,对数据进行存储、加工分析和可视化,并且对数据未来若干秒的走势进行预测。
内容简介
本书是国内少有的从系统构架角度介绍机器学习应用的图书,总结了笔者多年来在Google、微软工作中积累的精华。书中内容可以从工具、理论和案例三条线路来概括:
工具方面,除了数据分析工具Pandas、机器学习工具Scikit Learn和Docker以外,还介绍了RabbitMQ、Elasticsearch,以及MySQL、Cassandra数据库等。
理论方面,不仅介绍了监督式机器学习基础、衡量和评价方法,机器学习的常见构架,还在本书末尾对机器学习构架的设计模式进行了总结,这样的总结也属国内外业界首创。
案例方面,采用美股交易秒级数据作为案例数据,利用Pandas对秒级交易数据进行分析,利用Scikit Learn对股票变化方向进行预测,还打造了一个以RabbitMQ为消息传导中枢的实时处理系统。
作者简介
彭河森,资深机器学习科学家,曾在Google、Amaz*n、微软等公司从事一线机器学习构架和开发工作,参与了Google实时数据警报、Amazo*产品广告自动化优化、微软必应广告等多项海量数据、延时要求苛刻的机器学习应用工作。也参与Scikit-learn、Airflow、R等多项开源项目。对机器学习项目的生存期管理、架构设计、软件开发以及应用关键有着丰富的经验。
汪涵,资深机器学习开发者,曾是Amaz*n、微软、Quantlab、晨星等公司一线机器学习开发人员,参与了Amazo*AB检验服务、微软必应搜索问答系统等多项关键大数据处理和机器学习应用的构架和开发工作。对机器学习、自然语言处理有着深刻的体会。