当前位置: 首页 > 资源下载  > 电子书 > 计算机

机器学习与数据科学基于R的统计学习方法

12/18/2018 11:15:04 PM 人评论

从业者使用的工具是决定他的工作能否成功的重要因素之一。本书为数据科学家提供了一些在统计学习领域会用到的工具和技巧,为他们在数据科学领域的长期职业生涯提供了所需的一套基本工具。针对处理重要的数据科学问题的高级技能,本书也给出了学习的建议。本书包括以下内容

机器学习与数据科学基于R的统计学习方法

机器学习与数据科学基于R的统计学习方法

编辑推荐

从业者使用的工具是决定他的工作能否成功的重要因素之一。本书为数据科学家提供了一些在统计学习领域会用到的工具和技巧,为他们在数据科学领域的长期职业生涯提供了所需的一套基本工具。针对处理重要的数据科学问题的高级技能,本书也给出了学习的建议。
本书包括以下内容:
机器学习概述 监督机器学习
数据连接 非监督机器学习
数据处理 模型评估
探索性数据分析

本书选用R统计环境。R在全世界范围内应用越来越广泛,很多数据科学家只使用R就能进行项目工作。本书的所有代码示例都是用R语言写的。除此之外,书中还使用了很多流行的R包和数据集。

内容简介

当前,机器学习和数据科学都是很重要和热门的相关学科,需要深入地研究学习才能精通。
本书试图指导读者掌握如何完成涉及机器学习的数据科学项目。本书将为数据科学家提供一些在统计学习领域会用到的工具和技巧,涉及数据连接、数据处理、探索性数据分析、监督机器学习、非监督机器学习和模型评估。本书选用的是R统计环境,书中所有代码示例都是用R语言编写的,涉及众多流行的R包和数据集。
本书适合数据科学家、数据分析师、软件开发者以及需要了解数据科学和机器学习方法的科研人员阅读参考。

作者简介

Daniel D. Gutierrez是一位在职的数据科学家,就职于加州Santa Monica的咨询公司AMULET Analytics。为了紧跟行业的潮流,Daniel也是insideBIGDATA.com的执行编辑。同时,他也是一位教师,为大学和大型公司开设了数据科学、机器学习和R方面的课程。Deniel本科毕业于UCLA,专业是数学和计算机科学。

附件下载

  • 下载

    百度网盘下载

    下载: 所需积分:90

  • 积分获取方法:先给账户进行充值,然后进行积分兑换,积分兑换比例:1元可兑换10个积分.
    具体可参考帮助如何获取积分说明

相关资源