深度学习:R语言实践指南
内容简介
本书内容主要涉及:深度学习的数学理论基础,包括重要的统计学和线性代数的相关基本概念和知识;深度学习的各种典型模型,例如传统的单层感知器模型、多层感知器模型,以及卷积神经网络、循环神经网络、受限玻耳兹曼机、深度信念网络等一些更为复杂的模型;构建深度学习模型的实验设计方法以及实验过程中的特征选择方法;应用R语言进行机器学习和深度学习实践的案例。
作者简介
ABOUTTHE AUTHOR 关 于 作 者 Taweh Beysolow Ⅱ机器学习科学家,现居美国,热衷于研究及应用机器学习方法解决实际问题。他本科毕业于圣约翰大学,获得经济学学士学位,后获得福特汉姆大学应用统计学硕士学位。他对一切与机器学习、数据科学、计量金融及经济学相关的内容都有着巨大的热情。