数字图像处理与识别
编辑推荐
★作者功底深厚、华北电力大学孙正教授作品。
★本书首次针对本科层次院校师生全面地介绍了数字识别领域的关键技术和方法,并获得了国家自然科学基金和中央高校基本科研业务专项资助。
★配套完整电子教案资源,并给出多个综合图书处理与识别实例素材文件,实用性高。
内容简介
《数字图像处理与识别》主要从工程应用的角度比较全面地介绍数字图像识别的基础理论和实用技术,以及近年来数字图像处理、图像分析与识别领域的最新研究成果,注重理论,突出实用。全书分为五章,主要内容包括:数字图像处理、分析与识别的基本概念和基础理论;数字图像分割的主要方法和技术,包括并行边界分割技术、串行边界分割技术、并行区域分割技术和串行区域分割技术;图像特征的概念、提取、描述和分类方法,包括颜色特征的表示与提取、形状特征的表示与提取、纹理特征的表示与提取的典型方法以及空间关系特征的提取方法;特征空间的降维方法及特征向量的分类方法;基于模板匹配的图像识别方法;运动图像序列的分析与识别方法,包括基于光流场的运动分析、基于图像配准的运动估计和基于变形模型技术的运动图像跟踪与估计。每章都包含多个工程应用实例,且各章的理论和技术具有一定的相关性和独立性。本书结构紧凑,内容深入浅出,讲解图文并茂,可作为通信与信息工程、电子科学与技术、计算机科学与技术、控制科学与工程、生物医学工程等相关专业本科高年级学生的专业选修课教材及研究生相关应用课程的教材和参考用书,也可为从事图像处理、分析和识别等相关领域的科技工作者和工程技术人员提供参考。